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SUMMARY

In this contract (NAS8-25101), a systematic theoretical investi-

gation of the dynamical behavior of the solar active region has been

performed. As a result of these studies, we have concluded that the most

appropriate physical mechanism in helping to understand the disturbed

solar atmosphere is the propagation of shock waves in a model solar

atmosphere. During the course of this contract, we have examined two

important cases:

(i) The Downward Propagation and Response of the Chromosphere

In this study, we have examined the responses of the solar

chromosphere to an infalling material stream resulting from the

"disparition brusque" of a prominence. We found that the solar

chromosphere is heated by the shock resulting from the infalling

material stream and radiation is enhanced. The enhanced radiation

terminates the shock around the height of the temperature minimum

in the Harvard-Smithsonian Reference Atmosphere model. This

radiation enhancement is identified as Optical (Ha) flares. The

detail of this study was submitted to the National Aeronautics and

Space Administration, Marshall Space Flight Center, as an Interim

Report for this contract, dated March 1972 (UARI Research Report No.

114). A part of this study is also published in Solar Physics,

Vol. 30, Page 111-120, 1973.
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(ii) The Upward Propagation of Solar Disturbance and Its Responses

After completion of the study of the downward propagation of

a shock through the chromosphere (from ~ 2000 Km to the sun's surface),

we felt it logical to examine the responses of the solar atmosphere

due to.an outward propagation shock. Therefore, in this final research

report, we shall report the results of this study, since the other

results have been documented already. In this study, we have

employed the Lax-Wendroff method to solve the set of non-linear

partial differential equations, because the method of characteristics

used to analyze the downward propagating shock became invalid due

to non-homogeneity in the model of the solar atmosphere. It was

found that this theoretical model can be used to explain the solar

phenomena of surge and spray. A criterion to discriminate the

surge and spray was found. The detailed information concerning

the density, velocity, and temperature distribution with respect to

the height and time is presented. The complete computer program

is also included in this report.

Finally, we would like to summarize the publications and research

reports resulting from this contract as follows:

i. Refereed Publications

(1) "A Kinematic Model of a Solar Flare," Solar Physics,

Vol. 30, 111-120, 1973.

(2) "Non-Equilibrium Ionized Blast Wave," J. of Physical

Soc. Japan, Vol. 36, No. 1, 1974.
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(3) "Kinetic Description of Solar Wind Interaction with

'Small' Celestial Objects," Rarefied Gas Dynamics

(ed. K. Karamcheti), Academic Press, New York, 1974.

(4) "A Kinematic Model of Surge and Spray," to appear in

Solar Physics, 1974.

ii. Research Report

"Propagation of Downward Shock Waves Generated by Infalling

Dense Prominence Materials in a Realistic Solar Atmosphere,"

UARI Research Report No. 114, March 1972.
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CHAPTER I

INTRODUCTION

During previous studies [1, 2], we found that the optical (H.)

flare can be identified with the response of the solar chromosphere to

a shock wave propagating downward through the chromosphere. The shock

wave is related to an infalling material stream resulting from the

"disparition brusque" of a prominence as suggested by Hyder [3, 4, 5],

and Nakagawa and Hyder [6]. In the general impact theory, there are

always twowaves generated propagating in opposite directions right at

the moment of the impact. According to the coordinate system which

we adopted here, one of these two waves is propagating downward through

the chromosphere to the photosphere, and another one is propagating upward

through the transition region to the corona and beyond. The study of a

downward propagating shock through the chromosphere has been completed and

reported [1, 2]. Therefore, we shall present the results of upward

propagating disturbances (either shocks or subsonic disturbances)

through a model solar atmosphere in this report.

To calculate the downward propagating shock through the chromo-

sphere, we have used the CCW (Chisnell, Chester, Whitham) [7] approxi-

mation which is based on the theory of characteristics. However, it

is noted by Bird [8] that this method of approximation has only provided

satisfactory accuracy for a shock propagating into a denser medium.

Therefore, it seems to us that it is not quite proper to apply the CCW
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approximation to calculate the outward propagating disturbances, because

the model solar atmosphere is attenuated outward. Thus, we have chosen

the Lax-Wendroff method [9, 10] for the present study. This is a

numerical method, which has the advantage of taking care of both the

sub- and supersonic disturbances. The numerical accuracy can be con-

trolled by using proper numerical techniques, such as by specifying the

proper time increament and grid size in the computation processes based

on the physical model of the solar atmosphere.

In this study, the evolution of the disturbances, originating at

~30,000 Km (~ 0.0428 Rs  R s being the solar radius ~ 7 x 105Km),

is examined in detail using the method we mentioned in the previous

paragraph. These disturbances are identified as pressure pulses with

different strengths and durations. From the present results,we have shown

that the short duration (few minutes) and moderate strength pressure

pulse (A p ~2) will result in the phenomenon of "surge," because it

shows that a stream velocityof -100 - 200 km/sec can be achieved in this

case. It also demonstrated thasits im a c tial pr ofhe material

falling back to the suds surface which agrees with the observation.

The longer duration (i.e., 20-40 minutes) and stronger strength pressure

pulse (Ap ~ 10) shows that a stream velocity of the order of 1000 km/sec

is achieved and no falling materials can be seen. Thus, we have identified

this case as the "spray".

Finally, we should point out, that there is little difference between

the adiabatic calculation and the calculation with a Cox-Tucker type
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radiation loss as has been shown in the calculation of the downward

propagating case [11. This is because the Cox-Tucker [11] radiative

loss is mainly based on the hydrogen-equilibrium radiative-equilibrium

estimation that only covers radiation such as the Balmer

series. It is worthwhile to examine the radiative effects in further

detail.
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CHAPTER II

FORMULATION OF THE PROBLEM

II-1 Hydrodynamics Model

In the solar atmosphere of interest in the present study, the

gyro-radius is ~ 10 km, and while the scale height is of the order of

a thousand kilometers, we can consider that the medium is filled with

collision-dominated plasma. Thus, the physical behavior of this plasma

can be considered as a continuum fluid. Consequently, the hydrodynamic

model was chosen for the present problem.

In dealing with radiative cooling effects in this problem, we

have chosen the Cox-Tucker model [11], because the dominating radiation

in this part of the solar atmosphere results from bremsstreahlung,

recombination radiation, and collision-induced line emission. A summary

of this radiative loss is shown in Figure 1. For the convenience of the

numerical calculation, a simple, analytical closed-form expression is

adopted,

QR = X p2 T . (2-1)

The symbol QR is the radiative cooling rate (ergs/cm3 sec), p is the gas

mass density (gm/cm 3) and T is the temperature K). Finally X and a

constants determined by the results given by Cox and Tucker, as shown

in Figure 1. The numerical values for these two constants at various

temperatures are presented in Table 1.
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Table I. Temperature of Radiative Cooling Rate

Range of Temperature OK X

T < 5.0 x 104 X = 1.0 x 10 1 a = 3.55

5.0 x 104 < T < 2.5x105  X=3.0 x 1026 a = 0

2.5x 10 < T I 7.0x106 X=.0 E32  a = -1.172

7 x 106 < T X= 1.0x 10 2 3  I = 0.288

gives Q =XP 2 Ta(ergs/cm3sec)

As we have discussed previously, the hydrodynamic model can be

used for the present study. In order to avoid unnecessary complexity

while retaining the basic physical process of the problem, we consider

the plasma flow guided upward along a vertical magnetic flux tube. The

possibility of such a confinement is discussed by Nakagawa and Hyder [121,

and it was shown that confinement is possible when the gas pressure

within the plasma flow.is smaller than the local magnetic pressure, i.e.,

B> 2 M2p , (2 -2)
8~r y+l

where B is the strength of magnetic field induction, y the ratio of

specific heats, M the shock Mach number and p the gas pressure. If we

consider that the maximum gas pressure in the model of the solar atmo-

sphere is -1.5xl0-'cgs, which corresponds to the gas flow velocity

of the order of 4x 102 Km/sec,we find that Eq. (2-2) is satisfied for

B 60G, which is a reasonable value of B in an active region. Therefore,

the magnetic force effect can be ignored in this calculation. The

governing equations for the present problem can be written as
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Continuity:

+ V * p =0 , (2-3)

Momentum:

p + * VV = - Vp + pg , (2-4)

Energy:

p T~- + (V . V) E -pV.V + V(KVT) - QR (2-5)
at

where V is the flow velocity and g is the gravitational acceleration along

the normal axis from the sun's surface,toward the sun. E is the internal

energy of the gas per unit volume, K is the thermal conductivity and QR

is the radiative cooling loss rate given by Eq. (2-1). Finally the

equation of state is

p = pRT = pkT, (2-6)
m

and

E =CVT = (2-7)
p(y-l)

with R, k, m, and CV being the gas constant, Boltzmann constant, average

molecular weight and specific heat at constant volume,respectively.

Let us adopt the spherical coordinates for the present study,and

further assume that the case of spherical symmetry, the thermal con-

duction is negligible compared with radiation. The Eqs. (2-3) through

(2-5) become

-- + (pu) + 2 0 (2-8)
at ar r
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au au _ g, (2-9)
at ar p ar

+ u +u _ QR  (2-10)
t ar p at 3r

where u represents the radial velocity and depends on radius r

and time t

The gravitational acceleration g is given by

gs Rs
g = 2 , (2-11)

with gs being the gravitational acceleration at the surface of the sun,

and Rs being the solar radius.

Eq. (2-8) through (2- 10) are set of non-linear time dependent

partial differential equations without dispersion coefficients (i.e.,

viscosity, diffusivity, etc.). To find an analytical solution for this

set of equations with various boundary conditions is impossible. How-

ever, it is possible to obtain a numerical solution. Some discussion

on the existing numerical method will be given in the next chapter.

11-2 Initial and Boundary Conditions

11-2-1 Initial Conditions

Initially, we have assumed the solar atmosphere at the photosphere

and chromosphere to be the Harvard-Smithsonian Reference Atmosphere (HSRA)

[13]. Beyond its range, the solar atmosphere is assumed to be in a state

of hydrostatic equilibrium, which can be calculated from Eq. (2-4), thus

d -pg = - p zgR /r 2  
, (2-12)

dA L . Pog pO gs Rs22dr
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where superscript o denotes the quantities at steady state.

Substituting pO = po RTo into (2-12), we obtained

dpo(r) -_(r) Rs + 1 dTo(r) (2-13)
dr o RTO(r ) r 2  TO(r) dr

Eq. (2-13) should be numerically integrated for a given temperature

profile of the atmosphere. lbwever for an isothermal atmosphere Eq. (2-13)

reduces to a simpler form

1_ d o gs R2 (2-14)
0o dr RTo r2

Integration of this equation yields the solution for the density profile of

the hydrostatic atmosphere,

p0o = po Exp L- , (2-15)
o RT r r

0
where p is the reference density at r = r1. Steady state pressure

distribution is then

o 0 F s R 1 1

p = p Exp s s (2-16)
o r r1

where po is the pressure at r = r
o 1
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11-2-2 Boundary Conditions

There are two boundary conditions, one at r = 0 and one at r - m,

to be given. The lower boundary condition will be characterized by

disturbances such as density pulse, temperature pulse, velocity pulse,

and pressure pulse. To introduce these pulses, we can specify them by

prescribing the amplitude and duration of the pulse which depends on the

characteristics of the disturbances.

For example, the disturbance is introduced at the lower boundary

as a pressure pulse and the velocity is zero at t = 0. But, the velocity

on the boundary for t > 0 will be determined from the continuity equation

thus

un = n un pn (2-17)
1 2 21

where subscript 1 denotes the boundary and 2 denotes the mesh point

next to the boundary, superscript n denotes the time increment, such

that t = nAt < T, T being the duration of the disturbance. When t > T,

disturbance is gone,and the lower boundary returns to its.unperturbed con-

dition, i.e., a hydrostatic equilibrium state.

On the upper boundary we have used the completely absorbed con-

dition, i.e., all the effects due to reflected waves are ignored. The

reason for keeping this assumption is because the time for the reflected

wave to reach the upward-propagating wave packet is much longer than

the time for the upward-propagating wave to reach the upper boundary. Thus,

the non-reflective boundary condition for velocity can be expressed as

9



n = 2n n (2-18)
j j-1 j-2

where C represents a physical quantity, the subscript j denotes the mesh

points at upper boundary and superscript n denotes the time step.
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CHAPTER III

NUMERICAL TECHNIQUE

Numerical computation of time dependent inviscid, compressible

flow is a formidable task because of the appearance of discontinuities

in the flow field. The conventional way to solve hyperbolic types of

differential equations is the method of characteristics. In this method

partial differential equations are usually written in characteristic form.

Due to the presence of discontinuities in the fluid, these characteristic

equations can not be integrated over the entire region of space. Instead,

the integral form of the differential equations is used for the dis-

continuities while differential equations are applied to the remaining.

region. Although this method is very simple in principle, its application

to practical problems is very lengthy and cumbersome. Furthermore, the

fact that one cannot know the time and location of such discontinuities

in flow field prior to the computation makes application to actual problems

almost impractical. Watts and Rosenverg, et.al. [14] solved the transient

adiabatic compressible fluid flow in aductby using the characteristic method

in an elegant manner. Their method can be, in principle, extended to

solve the present problem. However, the resulting computational procedures

will be too complicated to be practical. It may be worthwhile to examine

this method in some detail at a later date. Gentry, et al.,[15]

used the FLIC method, known as Fluid in Cell, to describe the time dependent

equations of motion for the compressible flow of a fluid. This method has
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been used to solve a wide variety of problems in compressible fluid flow.

Hundhausen, et al, [16] used this method to simulate the flare generated

disturbances in the solar wind.

Currently, the most commonly adopted method for solving the

compressible fluid flow problem is probably the Lax-Wendroff difference

method. Lax-and Wendroff [9, 10] suggested that partial differential

equations are first written in divergence free form, and then the

difference equations in the divergence free form can be generated from

these equations. The mathematical proofs are beyond the present scope

of these studies and will not be presented in this report. However, the

basic idea of this method is that errors caused by the discretization

process tend to smooth the solution. This allows the representation

of shocks by smearing discontinuities over several mesh points.

There are many versions of the difference scheme for the conser-

vational form of equations. Some detailed comparisons among these versions

are made by Ehmery [17] and Burstein [18, 19]. One version due to Burstein

[20], is used for the present study.

III-1 Conservational Form of Equations

Divergence-free form of the governing equations will not create or

eliminate any flow variables. After some algebraic manipulation (see

Appendix A) the governing equations [2-8], [2-9], and [2-10] can be written

in Eulerian pseudo-conservational form;
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ap - (u) - 2 (3-1)
at ar r

a -u) ~ - -1) E - (y-3) pu -pg 2pu2  (3-2)
at r 2 r

3E E - -1 1 pu2
at 3r- 2 pug R

S[u(yE - (y-1) (3-3)

where E is the total energy per unit volume, given by

2_ pu
E = -1 (3-4)

Using vector notation, Eqs. (3-1), (3-2) and (3-3) can be put in the

form

S_ + K (3-5)
at ar

where U, F and K are three components vectors;

U =Ipu (3-6)

pu

F = (-)E - pu (3-7)
2

uyE - pu j13
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2pu

r

K -pg - 2pu2  (3-8)

-pug - R -. [u(E - -1

Using the difference operator, Equation (3-5) is approximated by

6t U = -6 r F + K, where (3-9)

6t and 6r is yet to be discussed. There are several versions ofLax-Wendroff

difference schemes which have been extensively used for a wide range of

fluid flow problems.

Lax-Wendroff scheme is based on the Taylor series expansion of the

vector function U(r, t + At) so as to include the second order term

~2U/3t2 . A two-step method obtained by Richtmyer [211 is used here.

The values at the intermediate points are computed at a time t + At/2

using a first-order correct scheme, and then a second-order correct scheme

(leap frog) is used to compute the value at time t + At. The overall

scheme has, thena second-order correct differencing scheme. Burstein, et-. al.

[20] suggested that instead of computing the intermediate value at time

t + At/2, they compute them at t + At and then average the F difference

at t and t + At so that both the U and F values are centered at point

(i, t + At/2). The above differencing method applied to Equation (3-5)

yields the following difference approximation:
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Intermediate Values

n+l Un + Un ( n  n + t Kn

=2A 1 U Q" F- i /F -F + At i
Ui -1 i+ 2x i+ "i- i

where the bar signifies the intermediate flow variables at (i-1/2)Ax, iAx,

(i+1/2)Ax and at (n+1)At. Using these intermediate values of .the variables

we calculate the final values.

Final Values

n+l n At 1 n n /- n+l - n+l

'i 2Ax i+ +1/2 i-

(3-11)

At n +-.n+l
+ 2 K + K

- n+l -n+l - n+l
where the intermediate values of Fi+1/2 , -/2 and K. are

calculated by using Eqs. (3-7) and (3-8) with intermediate flow

variables obtained in the previous step. Combining Eqs. (3-10) and

(3-11), it is easily seen that this is a second-order correct-differencing

scheme.
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111-2 Numerical Stability

Finite difference equations may exhibit rapidly growing and

oscillatory solution that cannot resemble the true solutions of partial

differential equations. In this case, the difference equation is said

to be computationally unstable. The origin of instabilities varies with a

particular set of partial differential equations. Many theories and

criteria have been developed by many investigators, such as Richtmyer

and Morton [22], Hirt [23], and Van Leer [24]. However, it is not possible

to have a general theory for higher-order non-linear equations, such as in

the present problem. The discussion given here is not rigorous, but

presents some heuristic techniques which prove very usefulin stabilizing

the computations.

III-2-1 Time Interval

As a first approximation, the time interval for successive interations can

be found by applying the stability criterion of Courant,Friedrichs and Lewy,

At < Ar(3-12)
s JuJ + a

where a is the local sound speed. When a thermalconduction term is included

in the governing equations, thermal conduction stability criteria should

be considered. Applying the Fourier method proposed by von Neumann con-

cerning the heat conduction equation, one finds the time interval [5] Atc to be

I p (Ar)2

Atc < 2 (3-13)
K(y-l)T7/2
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In the case of heat exchange terms becoming arbitrary, namely QR, the K3

vector in Eq. (3-8) of the present problem, can be varied very rapidly.

When such a case occurs, numerical oscillation starts and computation

terminates. In order to smear out such oscillation, the time step is

chosen according to

QR At < - . (3-14)
tQ 2 y-l

For a model that does not include the conduction term, 0.25 Ats is

sufficiently small to satisfy all stability criteria.

111-2-2 Artificial Viscosity

If the strength of the disturbance is large, a sharp jump in the

flow variable occurs in the flow field. We can find this jump condition

by applying the Rankine-Hugoniot relations. In numerical simulation, these

discontinuities easily cause the onset of instability. Thus, the artificial

viscosity is introduced to help offset the instability. The idea of

introducing artificial viscosity into shock calculations is due to the

work of von Neumann and Richtmyer [25]. The basic requirements for a

purely artificial dissipative term are:

(i) all flow variables should have smooth transitions across the

discontinuity;

(ii) transitions should have correct jump conditions computable

with Rankine-Hugoniot conditions;
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(iii) the discontinuity should travel at very nearly the correct

speed; and

(iv) the thickness of transition is independent of shock strength,

pressure or density of material while the shock is moving [26].

Introducing a pseudo-viscous pressure term in the compression zone,

it is shown that all requirements for the artificial viscosity are

satisfied. The pseudo-pressure is given by [261

S(p2 /U if au/3r < 0

q = (3-15)

0 if Du/Dr > 0

where 2 is a constant having the dimensions of length. Then the total

energy, Eq. (3-4), for the compression region, au/er < 0, is modified

to include the pseudo-pressure, such that

E = P + q + Pu .(3-16)
y- 1 2

It is seen clearly that this correction only affects the compression region

and that the continuity equation is inact by this modification. Letting

Z = CAr, the appropriate difference approximation for the altered pressure

is then

n n  2 n (un n n n.
(P+q) Pi + 2 i i+l - u if ui+l<ui

i (3-17)

n n
p if u _u.

i i+l-

for the intermediate step, and

( + n+l n+l n+l - n+l

n+l n+l 1 2 Pn+l ui+1 ui+/2 +
(pqi+1/2 i 2 i+/2 ui+ - 2 i+ < i+/2

n+l - n+l n+l
i if ui+1  >ui+1 /2

(3-18)
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for the final step of computations, where - signifies the intermediate

values, and S has the value of 1 to 5. The effect of q on the overall

picture is carefully tested by several trial runs. There is no significant

change in flow variables except at discontinuities, and the transition

occurred over 3 or4 mesh points.

III-2-3 Shock Dissipation

Mechanical energy carried by the shock wave is dissipated into thermal

energy of the gas which experiences an irreversible, non-isentropic process

as the shock front passes through the gas. For a unit mass of gas,the

thermal energy increases in terms of enthalpy which depends on how the

post shock gas returns to its pre-shock gas state. Schtzmann [27] suggested

that the gas expands adiabatically until it comes back to the initial

pressure and then cools down until it reaches the initial density. Along

this path, the change of enthalpy is given by [28]

Ah = Po +1 y P (3-19)
2 ppo Y- 1  p Po

where subscript o denotes the pre-shocked gas. Then, for aperiodic disturbance

propagation, the total enthalpy change of the gas is

QD =  - p Ah (3-20)

where w is the period of the disturbance. Letting

=/2
p= L., C-Y= and = ( I)

Po  Po a

Eq. (3-20) becomes
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QD (-i) + - (2++) (3-21)

where i and a are functions of shock Mach number;that is,

S = 21- M 2 _ Y-1
y+l s y+l

(3-22)
(y+l) Ms,

(y-1) M 2+2

shock speed relative to pre - shock gas
s sonic speed in pre-shock gas

The detailed structure of the shock front must be known in terms of its

position and its strength Ms in order to find the accurate shock dissipation

in the gas. However, it is not possible to determine the exact position

of the shock front, since the transition occurs over several mesh points.

It is not quite clear how to determine the exact shock strength Ms  in

this numerical calculation. The pressure difference between the neighboring

points does not give the shock strength, because the unperturbed solar

atmosphere possesses a densiyt gradient. In order to give an

approximate shock strength at position iAr, the following equation is

employed:

ui-l - ui
Ms a. (3-24)
i a.

This equation only gives a parameter which is related more to the local

gas flow than the shock strength. In other words, Eq. (3-24) is

a sufficient condition for a shock, but not a necessary one. It does,
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however, provide a mechanism for continuously monitoring the presence of the

discontinuity,whenever the discontinuity occurs,in a very simple manner.

In computation, then, from Eq. (3-21) with Eqs. (3-22) and

(3-24), the dissipated energy due to the shock is included in the form

i a1) 1 + 1 n for n< 1 (3-25)
i y 2 Y-1i i

0

For a dynamic model, the exact value of w cannot be defined. An estimation

of w is made on the ground that the weak shock travels one mesh point with-

in the time Ats, i.e.,

Ar
At

s ljul + a

Since the Lax-Wendroff method is an explicit difference scheme, disturbances

travel one mesh point for each full iteration. Thus, w equals to Ats

approximately. Without the addition of QD in the K3 term in equation (3-8), the

temperature of the gas just ahead of the shock.goes negative sometimes,: and the

calculation is terminated. With this modification, the solution remained

stable and there is no noticeable difference in shock structure.

111-2-4 Minor Modifications on Difference Equations

Due to the exponential decrease of density in a quiet solar atmosphere,

the difference scheme needs two minor modifications. For a hydrostatic

solar atmosphere, the density variation along the r-direction is

from Eq. (2-15),

n n n
P pn exp (-hir /r), (3-26)
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where

n gi
h = Ar (scale height) (3-27)
i RT

Then the nearest-neighbor average value appearing in the first term

in RHS of Equation (3-10) is larger than the value at the central point, i.e.,

0.5 n + 0 po h0.5 i-1 + pn = 0.5 (e-h + e h

= 0.5 p n 2+ hn = > n (3-28)

If this difference is not corrected, the density after the intermediate step

will become excessively large, and the unchanged vertical pressure cannot

support this excess material. Consequently, a downward velocity appears over

the entire field. Instead of a simple average, an expression

0.5 (n + pn + - 0.5 (pn _ + pn
i-1 i+1 i i-1 i+1

is used for p n
i

Rearranging this, one gets

0.5 (pn +pn + 0 .5 ip 1-0.5 (e-h + e h) (3-29)

If the nearest-neighbor points have the same value as the center, then

Eq. (3-29) reduces to the simple neighbor-points average value.

In the process of calculation, the 2nd correction term in Eq. (3-29), is

applied for the intermediate step of each iteration for all conservational

variables at full mesh points.

Due to the exponential variation of the hydrostatic equilibrium state,
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the difference approximation is systematically different from the

derivatives they approximate. That is why the error grows from Eq.

(3-26),

ap hn

i _ pn (3-30)
Dr Ar i

But the simple centered difference approximation to the first derivative

with respect to r gives

n nn h
S  Pi-l-- i+l e h - e ih n

r . 2Ar 2Ar

(3-31)

n h pn
S hi 1+ p < Pi

Ar 6 i r

Unless this discrepancy is corrected, an incorrectly calculated pressure term

in Eq. (3-2) will set the flow field in an upward motion. In order

to avoid this non-physical situation, a correction term cn is defined such
i

that

6r + ) p = (3-32)

Combining Equations (3-31) and (3-32), cn is found to be
i

cn + 0.5 eh - e+hi (3-33)i Ar

This correction term is included for both steps in each iteration.
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111-3 Computation Procedure

The actual calculation procedure for the present problem is

illustrated in Figure 2.

The steady state temperature T of the atmosphere is assumed to be known

and the steady state density is found by using Eq. (2-15), i.e.,

n = n Exp s R ( ] (3-34)

i 1 RTn ri r

For a hydrostatic equilibrium state the velocity of the field is zero,

un =0 (3-35)

The total energy is then, from Eq. (3-16),

E = + • (3-36)

i y - 1 2pn

n n
where p. and qi are determined by Eqs. (3-17) and

i 1

(3-18), respectively.

The disturbance at the lower boundary is introduced in terms of a

pressure jump. For instance, pn = 2pn Tn = Tn will give pn/pn = 2.
* 1 T * 1 *1

This arbitrary disturbance was kept constant for a prescribed time

interval T. After this period of time, the lower boundary returns to its

original state.

The time increment At is found by the CFL (Courant-Fredricks-Levy)

condition, and is applied to each mesh point in the flow field.
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Using these initial values of conservational variables, the

fluxes at time (nAt) are found from Eq. (3-7) and (3-8).

Fn = (pu)n
ii  i

F2 i = (y-) En n (-3) pn (ui)2
2 =i un E i  2 i u

Fn n ( n (y-l) n (U
3i i i 2 i i

K n 2pn un
K i i
li r

n n 2 pn (u,) 2
K2 = - g - 1 1

Y

n n n n 2 [n i-(-l) (U 2] (QD)n
K3 = - pi ui gi R) E -(-1) 2+ (QD

where

gi = gs Rs /(ri)2; gravitational acceleration

En is given by Eq. (3-25).
i

n n n

(QR)i= - i (T)

and (QD)n is given by Equation (3-25).
i

Using these fluxes at nAt, the intermediate conservational flow

variables at (n+l)At are found from Eq. (3-10) with Eq. (3-29). Inter-

mediate fluxes at (n+l)At are found by similar manner as those at nAt

-n
except intermediate flow variables, Ui should be used in Eq.

(3-29) and (3-33). The new flow variables at (n+l)Atare then calculated

by using Eq. (3-11) with the aid of Eq. (3-33).
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CHAPTER IV

RESULTS OF COMPUTATIONS

Numerical results are obtained for given various initial boundary

conditions identified as a pressure pulse with different amplitude-and

duration resulting from possible solar disturbances due to solar activities.

All disturbances are placed at the lower boundary which is located at

-30,000 Km (1.043 R,)above the sun's surface, and all the calculations are carried

out to ~ 3 Rs (Rs being the solar radius). The results obtained in this

report are the density, temperature and mass flow velocity as a function

of height and time for Ap (pressure disturbance) equal to 2 - 10 and

AT (duration of the disturbances) equal to 30 sec, 60 sec, 120 sec, 1200

sec,andin some cases, 2400 sec. A detailed discussionof these results

will follow.

Figure 3a, b, and c plotted the disturbed density, temperature and

velocity due to disturbances of Ap = 2 and AT = 120 sec. It shows that

the disturbance has little effect on temperature and density and its

influence on mass flow velocity is significant. It appears that this

disturbance has created a mass stream shooting out from the upper chromosphere

or/lower corona to upper corona with a flow velocity ~ 50 Km/sec at- 1Rs

from the surface (i.e., ~ 2Rs from the center of the sun). Similar plots

with different initial strength and duration of disturbances are

given in Figures 4a, b, c through 11 a, b, c. These results clearly

demonstrate that the characteristics of the disturbances are the essential
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parametersof the effects of the disturbed solar atmosphere.

Some general features of the disturbed solar atmosphere can be

observed from these results. Namely, the stronger initial disturbance

gives a stronger temperature enhancement and its mass flow velocity can

reach as high as 1000 Km/sec,and a longer duration of the disturbance

will sustain the disturbed solar atmosphere, and there will be material

falling back to the sun's surface. For example, we have plotted the

velocity versus height for Ap = 6 and AT = 30 sec, 120 sec, 1200 sec,

and 2400 sec at t - 40 min. after explosion. This shows that the negative

velocities (i.e., downward velocity) appeared near the surface of the

sun for AT = 30 sec, 120 sec and 1200 sec and for AT = 2400 sec, mass

flow velocity just ejects out from the sun's surface all the way. From

this evidence, we may suggest that the surge develops due to a short

duration disturbance, because, observations show the material falling

back to the sun's surface during a surge.

Now, we shall calculate the total energy of the disturbance initially

introduced into the solar atmosphere. The total energy can be computed

from

E = ( P E Vi)  + Pi Ui) (4-1)
i y+l 2 i

where on the right hand side, the first term represents the internal energy

and the second term represents the kinetic energy of the gas in a volume

(~.) . The results corresponding tovarious disturbances are shown in Table II.
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Table II
Total Energy Per Cross-Section Area for Each Disturbance

(ergs/Km2 )

Ap AT = 30 sec AT = 120 sec AT = 1,200 sec AT = 2,400 sec

10 7.31 x 1017 9.42 x 1018 3.80 x 1020 6.72 x 10 m

6 1.98 x 1017 2.63 x 1018 1.38 x 1020 2.76 x 10'

2 2.60 x 1016 1.48 x 1017 1.8 x 10' 9

If we consider the cross-section area of a disturbance which has a radius

of ~ 500 Km., it will give a total energy of ~ 5.28 x 1026ergs for the

Ap = 10 and AT = 2400 disturbance. This may correspond to the total energy

of a class of sub-flare.

From those density profiles, such as Figures 3a, 4a, 5a, 6a, 7a,

8a, 9a, 10a, and lla, we can estimate the amount of particles which can be

ejected into the corona (or solar wind), and the results are given inTable III.

Table III
Total Number Particles Per Cross Sectional Area

for Each Disturbance (#/Km2)

Ap AT = 30 sec AT = 120 sec AT = 1,200 sec AT = 2,400 sec

10 4.77 x 1026 5.87 x 1027 1.87 x 1029 3.44 x 1029

6 2.60 x 1026 3.37 x 102 7  1.42 x 1029 2.85 x 1029

2 5.5 x 102s 7.30 x 1026 3.43 x 1028
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Again, if we consider the cross-section area of the disturbance being

-500 Km in radius, we find that 2.7 x 0s35 particles can be added to the

corona, which is believed by many to be a reasonable number.

From thisstudy, we have shown that the surge and spray can

result from disturbances in the solar atmosphere. After the

disturbance has been introduced, the corona may settle into a new

equilibrium state. Evidence for this has been reported in some of

the observations from the ATM/Skylab experiments.
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CHAPTER V

CONCLUSION AND RECOMMENDATIONS

In this investigation, we have examined the upward propagating

solar disturbances in a model atmosphere. It was found that the

characteristics of the disturbances have dominant effects on the

disturbed solar atmosphere. We may conclude from this study that the

phenomena of surge and spray can be discriminated by the characteristics

of the initial disturbance, as we discussed in the previous chapter. Also,

the present model.can be used to examine the observed X-ray data from the

Skylab mission by relating the X-ray emission to the dynamical responses

of the solar atmosphere. The initial disturbances introduced in this study

can be either subsonic or supersonic without limitations.

The radiation effects on this problem were examined by using the Cox-

Tucker radiation loss function. We found that there is no noticeable

difference between the adiabatic calculation and the radiative calculation

with the Cox-Tucker radiative loss function. This is due to the fact that the

radiative loss function given by Cox-Tucker is decreasing as the

temperature is increasing. Therefore, it is necessary to calculate the

radiative loss energy from the spectral lines in order to have more

accurate results. Also, we have ignored the transport effect in the present

analysis.

Finally, we shall outline as follows, the steps which should be

taken to improve the present analysis:

(1) Include magnetic field in this model calculation.
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(2) Include thermal conduction effects.

(3) A detailed radiative hydrodynamic calculation-

procedure needs to be considered.
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APPENDIX A

Derivation of Conservational Form of Equations

The governing equations for the present problem written in

spherical coordinates are

Continuity; 3- _ (Pu) - 2u. (A-l)
t r r

au au 1 aP
Momentum; -u -- - -- g (A-2)

at Dr p 3r

3E _u P (3Bp _p
Energy; P- =  rE+ -p ap + u - QR but by virtue

at @r p at ar)

of Equation (A-1),this can be written

ae ac au 2up. p p 2 - QR (A-3)
3t Dr Dr r

Continuity equation (A-I) is already in conservational form.

Multiplying p to equation (A-2) and rearranging with the aid of equation

(A-i), we have momentum conservational form of equations,

(p)= - (pu2+p) - pg - 2pu2  
(A-4)

at r T

noting however p (y-1)E - (-l1) pu2 by definition, equation (A-4) becomes
2

3 (pu) [y-I)E - (-3) pu2] pg 2p (A-5)
t 9r 2 r

Energy conservational form is found by adding four equations, i.e.,

Sx eqn. (A-), - x eqn. (A-2), u- x eqn. (A-4) and eqn. (A-3).
2 2



Collecting /at terms, we have after some simplification,

D ( + 2) E (A-6)
at 2 at

Collecting 3/ar terms and other remaining terms, we get, after

some simplifications,

_ u(p + PC 
+  - upg - -- PC + -- + P Q

r 2 r 2 R

(A-7)

= r 2u (yE - ) u2)  - gu - QR - - pu

Thus, energy conservational form of equation is

uE [u(yE (y-l) Pu)- pgu - QR -2 U(YE (y-1) pu) (A-8)
at 2 r 2



APPENDIX B

I c COMPUTER LISTING
20 C O~EDIMENSIONAL MOVING SHOCH THROUGH THE SOLAR ATMOSPHERE
30 C 95 INVESTIGATED 3y UTILIZING FINITE DIFFERENCE TECHNIOUE

qC BASEI) ON THE LAX iMplR()FF CONSERVATIO-NAL LA":*

C THE FINAL. DIFFERENCE SCHEME IS PASED ON RUqiiN-f.3tR5TEINjS METHOD.

6 C PARAMETER IMAX=4. -

P* PARAMETER JMAXES
go REAL KIK2oK3

REAL KjHsK24lK3H __---------

I)* REAL KlAKIRK2AtK2,,K3AI(3F
12'* COMM014/BLOCI/IMIP1M2
130 COMMON/RLOC2/GAr4,GAMI,'GAM13,rSR5,CI,R
1'4* COMMON/PLOC3/RX(IMAX),X(lPIAX),PHI(IMAX),RXSrIIMAX)

150 COMMON/,RLOC4/FIIMAX),F2(IMAXIF3(IMAX) ,K2(IMAX1,K3( IMAX)

17 COMMt)N/RLOCS/U 1(1MAX) U'2( (IMAX 0( I MAX)
In' COMMON/f3LOC2.. /tU(MAX),TE(IMAX)

2,0COMMON/r3LOC7/UtIIUI ,UUI U31, TE I

21' COMMON/PLOC8/TEC(IMAX),UJIC(IMAX)

220 COMMON/93LOC9/U)IP(JMAX, MAX) ,UUP(JMAX, IMAX),TEP(JMAX,!MAX)
23' CON-MON/RLOCIC/HX(IMAX),CX(lIAX)

214 COMMON/PLOC 1/ UIAC IMAX) ,U2A( IMAX),U3A( IMAX, ,U13( IMAX),

24 lU2S(ImAX),U38fImAx) -

2 6 COMMON/E3LOC12/ FIA( Il1AX) ,FA( IMAX) ,F3A( IMAX i--FB( IMAX),o

7* IF2BtIMAX)sF3R(IMAX)
2> p COMO/ROC 3/U I H (...AX U '?H-(.1-M A X), U 0H I.A X )-JtiH(M111
290 COMMON/RLOC1I4/KIH( IMAX) ,K2H( TMAX) ,K3H( IMAX)

3,,i*COMMON/RLOCIS/U3H(IMAX) ,UUA(IMAX) ,UUR-(TMAX)
3 1. COMMON/iLOC16/DT - ------

3424 COMMON/gLOC26/C(TMAX)-
330 COMM0N/R3LOC3i.-/ET(IMAX)

- O M N R O Z IKIA(jjAk, (.MAX.IkKZ4 IMk ,J B -! XJj.K3At - 1~-)

350 1,K3P(IMAX)
364 COMMON/BLOC33/U3C(INAX),UUC(IMAX)
37' COMMON/PLOC4q2/QR(11AX ) ---------------

8 COMMON/ALOC43/(RC(lMAX)
3go COMMON/RLOCSC /T

.. C GAM=SPECIFIC HEAT RATIO __ --

'41' C RS=RADlUS OF THF SUN t
442C HP=HFIGi4T OF THE PROMINENCE

'43#1 C -HC=HEIGHT 0 F THEF CHROmOSPH.7RE
dfw C C3S=GRAVITATIONAL ACC.AT THE SURFACE OF THE SUN
4* C DX=SPATIAL INCREAMENT

- -f6* C - .--- R=GA S CONSTANT
47' C DT=ITME INCREAMENT
'48'0 C DTP.=TIMF INCREAmENT TO RECORD) r)ATAS ON THE kAGNETIC TAPE
'1496 - C - 1I='IPFRTUPRAF() CORONA DENSITY AT THE 5uRFACE OF _T1 SUN....

5'. C VARJASF NAMF5;
sI' C Uj=ojt4SlTY

S2' - C -U2=M)MEN'TU-' DENSITY __

G.3' C UU=VELOCITY
s14' C X2SPA T IAL COORD IN A T ME A Sup. LUP-AARI)

rC Z=SPAT IAL COORD)i NIATE -EASlUR )O~~~~
C S f) T =5 1, C K n j ,-. AT 10~ t~ I ME A T I.,HE JA UER 8OUliN DA Ry 0

7 RE Afl~ (%~. 5 T STOP



59' IM I = MAX- 1
60* IM2IMAX-2"
61* -GAM=Se/39 -

62v GAMI=GAM-I.

63. GAM3x3"-GAM
6 .RS=*.695E .+6 ---- --

65' HP=eES6
66* HC=3.E4
67 . GS=.274

680 R=,83E-2

69* DTP=48Q.

7Q ST = 6- Q* .. .-...... ......... ____
7.1' CI=GAMI/R

72* GSRS=GS*RS**2

73* UI Oa4. 1471 3E8

74 C

75* C INITIALIZATION

76' C
770 RX(I)=PS+HC
78' T=C,

79* TP=OJ

no DO 20 1=1,1
810 RX(I)=X(I)+RS

820 RXS I )=RX(I)*'2
83* 20 CONTINUE

84' 00 77 1=2 IMAX

85S X( I) x( -I )+2dc ., . . . . . .. . .

860 RX(I)=X(I)+RS

87 RXSQ(I)=RX(1)**2

88 TE(I)=1.53E6
39 . Ul0)=U IO*EXP((GSRS/(R*TE(I))) (I,/RX(I ) :1,/RXI( )))
90j 77 CONTINUE

910 DO 6t I1,IMAX
92' CON=2.E-12

930 UI(I)=CON UI (I)
99* UU(I)= o,

95' U2(I)=U1(I*UU(I)
96 PHI ( I )=+GSRS/RX( I

970 U3(I)=UI(I)o (TE(I)/C + .*UU(I)OG 2)

98' C(I)=SQRT(GAM*R*TE(I))

99 EI(I)=UI(I)OTE(I)/CI
Ifo00 UIC(I)=UI(I)
C01* U3C(II)=U3( )
IC.2 TEC(I)=TE(I)

1(3@ 6CCONTTINUE
104D 00 111 I=2, MI

ICS' HXII)=GSRS/(R*TE t )eI((XII+1 )X(I))/RXSQ(I I))

6' .. CX(I)= (HX(I)+.S5 (EXP(-HX(Il))-EXP(HX(I))))/(X(I+1oX(I ))
I;7. IIl CONTINUE
I.C0 WRITE (691C) T

1090 .. WRITE ,(6, 1I 5)
I10* WRITE ( 6 ,11U) (X(I),I1=19 MAX)

111' WRITE (6s105)
1IIP WRITE (6,11 ) (IlI(1) I =1 MAX)

I' WRITE (6.1I5)
L'i' WRITE (6,11 ) (UU(I)oI=I IMAX)

SIS WRITE (6 105) 0



116* WRITE (A,11i ) (U3(1),l=1,IMAX)

1 17* WRITE (E 6915)
118 WRITE (6,11 ) (TE(1),I=IlMAX)

119 WRITE (6,1 5)
12 ' WRITE (6t1[ o) (PHI(1) I=lI IMAX)

121 . WRITE (6 ) 12 _

122' C
123" C BACKGROUND CORONA RADIATION IS DETERMINED -BY TUCKERQS EQNoceo
12,4 C RADIATION EFFECTS ARE INTRODUCED BY INCLUDING RADIATION EQN
12s* C OBTAINED BY FITTi-NG OF TUCKERS RESULTS.
126 C
127 D00 62 I=1,IMAX
12 IF (TE(T).GT5, iE') GO TO II
129* C2=i*. EIQ
130* C3=3.59
13* GO TO 79
132' II IF (TE(l)*GT.2.SES) GO TO 12
133. C2C2=3.cE.26
134' C3=0s

133* GO TO 79
136* 12 IF (TE(I).GT.7.U E6) GO TO 13
137. .C2=1.bE32
138* C3=-1.172
139" GO TO 79

1 .* 13 C2= I.uE23

141* C3=0.288
142* 79 QRC(I)=C2* (UI(1)* 2I *(TE( I)eC3)
1q3" 62 CONTINUE
1 4A C
I1 S _ C
1'460 C PLOTTING OF THE INITIAL VALUES OF THE VARIABLES,o.,
1 q7a C

SCALL PLOT ,U,UTEL _____ __

,49* TP=TP+DTP
150 UII=UI(I)
151* .U21=U2(1)

152* UUI=UU(II
153* U31=U3(1)

S5. ... E...... ............T .IlTE(
15$* C
156 C
7.. .......... .. UP.WARD PROPAGATING SHOCK SIMULATIONN jTERMS OF DENSIT.

58* C ENERGYTEMPERATURE GRADIENTes,,
159* C REFLECTED SHOCK MACH NUMBERS ARE ASSUMED TO BE KNOTN

6 Q. C ........ATTHE LOWER OOJRnDARY* THEN THE_ JUMP CONDITUONS ARE FOUND BY
161' C RANKINE-HUGONIOT RELATIONS,
!62* C

U3 UIC= I (1)3 2,
69* UU0=-.
65 U2D=UlOUUC

66 .......... .... TEO=TE(I)
67* U30=UL0*(TEu/CI+ 5*UUOoo2)
6R' C
69 . KV;B=1

70' Ul I I=Ul
71- UU( )=UUj
72* UV2(1)=U2L
73' U3( 1).U3



174# TE(I|=TEu

,75' C(I1)SORT (GA R Tr *-E( )

176' El(I)=UI( I)*TE(I)/Cl

177* 70 CONTINUE

1790 C PREDICTOR STEP.,,.,

1 I"- C

i . CALL DTIMF (UUqC ) .. ..

1820 IF (DT.LT,.O01) GO TO 200

183' IF (T.LT.3-.) DT-I*

18 SDD=SDT+30, S D T 3
185* IF (T*GT.SDToANO.TeLT*SDD) oDT l.

186' CALL FLUXI (UIU2,U3s.TE,UUC)
.87 CALL EQNI (UI UU3sF F2..F3S K 3 D C H

!88 * C

189' C CORRECTOR STEP
190* C
191* CALL FLUX2 (UlAUIlBU2AsU2,i3U3AU3B,UlHIU2HU3HTEHaUUC

192' !UUA,U UR UUH, U )

193' CALL EQN2 (UI ,U2,U3,FI ,F2,F3 Ks 2,K3.FIAF2AF3AoK 1 9.K._ H oEI ......

9q4* IFIB,F2AsF38,K2HK3HDTICXHX,AKIAKIBK2AK20K3A9K38B

195' T=T+DT

196' C

197 . C--- REFLECTED SHOCK SIMULATION IN-TERM-OF-TH
E --KNOWN - MA_ wNUMBERe

98* C

99. CALL BOUND
!00' C

01 IF (KW*GTC ) GO TO 555

*2 GO TO 666
!030 555 CONTINUE
04e* WRITE (6,10) T

.0-o WRITE (6, 1 5S

060 WRITE (6,1I ) (UI(I)I=I 1 IMAX)

'07' WRITE (6,135)

'08* • WRITE (6,s1 ) (UU(1)I=1 IMAX)

!09* WRITE (6,11S)

10* WRITE (6 11~) (U3(1) I=IqIMAX)

II* WRITE (A, S5)
12* WRITE (6slIC) (TE(I)t Itti IMAX)

!13* WRITE (6 1_'5)
!1 .' WRITE (6, I U) (EI(I) 1 . , . =.! . AM.AX _

5I' WRITE (61 2%)

'16' DO 404 1= 19IMAX

17...Z .. _ . .... . c =S RT ( GAM R TE(.I. _

18' '0' 4 CONTINUE
'19* KW=

'20 __ 666 CONTINUE

21 KW=KW+I

'22* C

23 .......... PLOTTING 0.T .THE_ PRR YTUR ED _._VARIABL ES .o ................

240 C

'25s IF (T.GT*TP) GO TO 150
:26 GO TO 160

'27* ISC CONTINUE
'28# CALL PL T (IUIUUTE)

27 TP=TP+DTP

3C 160 IF (T.GTiTSTOP) GO TO 200

31' GO TO 7i
4)0



232. 20C CONTINUE
2330 C
231* K=I
235* DO 190 ItlMAX

236 X(K)=X(I)
237 '  K=K+I
238# C
239o 190 CONTINUE
2406 C
2'410 C THE FOLLOWING IS TO RECORD THE DATAS ON THE TAPEs.e,
2,42o C
243* DO 21 J1lJMAX
294* DO 21h 1=1,IMAX

2V5* IF (I.EQ*IMAX) X(I)=,I 0E37
2q6* IF (IEQ*IMAX) UIP(JIl)=1.I E37

F2_ ( I * 0 9 sM A X *A ANDq J$ Go J tlX) A X 9 1).= 9 .0 E 3.7-
248* IF (I.FQIMAX.ANDoJ.EQ.JMAX) UIP(JjI)m9.0E37
2'49* WRITE (9) XII)#UIP(Jil)
25 0* 2 C1. I.O.._CONTINUE
251 00 3ti Ju=,JMAX
252* 00 33J I1lTMAX
253' IF (IEQ*IMAX) X(1)=I E..37
254i IF (I.EQ,IMAXI UUP(JIII.C E37 .. . .

255* IF (I.EQIMAX.AND.J.EQJMAX) X(1)=9*OE37
256* __ _ IF (1 EQIMAX.AND.JEQ MAX) UUPJl 3E37

257' WRITE (9) X(I),UUP(JI)
258* 300 CONTINUE

..25~9_ .... ... ... . O:.. J l., JM AX _ __ _

260* DO qO I=IIMAX

261 IF (I.EO.IMAX) X(I)=1.9E37
.262 I ..(I.EQ IMAX)-.TEP(J l.)=I,.OE37.. ... _

263# IF (I.EQ*IMAX.ANDJEQJMAX) X(I)=9.0E37

264 IF (I.EQ.*IMAXAND.J.EQoJMAX) TEP(JoI =9 0oOE37

265 WR.ITE.. (9.) X( IJs.TEP(J .II
266 400 CONTINUE
267' STOP

b8. .OL__FORMATE.IO M A T._Se. 9)_.

269* 66 FORMAT (2F15.1,EIS6)

27C* 105 FORMAT (IH
.. 1._ ... ..... I.. FORMAT (IX, 9EI l. . ) .

272* 120 FORMAT (LHI)
273' END

ND OF COMPILATION: NO DIAGNOSTICS,



I' SUBROUTINE FLUXI (UiU2U3
TF.UUIC)

2; PARAMETFR IMAX=41.

3* REAL KIlK2,K3

4* COMMON/ R LOCI/IMI I M2

S5* CO MMON/BLO C 2 / G AM, G AM I, GA M3GS-tCiR

6 COMMfN/ILOC3/RX( IMAX) X(IMAX) ,PHI
( IMAX) RXSo(IMAX)

7t COMMON/BLOC'4/F( IMAX),F2(IMAX)tF3( IAX) 
K2(IMAX) K3 IMAX)

8' IKI(IMAX)

9* COMMON/RLOCB/TEC(IMAX)IUIC(IMAX)

10. . COMMON/BLOCI6/DT __-

I i e  COMMON/RLOC42/QR(IMAX

12* COMMON/BLOC43/QRC(IMAX)

136 DIMENSION UI(IMAX) ,U2(IMAX),U3(IMAX)TE(IMAX)

t14 DIMENSION UUII ( MAX) IC(IMAX) QDt IIM X- DM~iHAX)

IS* DIMENSION UD(IMAX)

17* C C2 AND C3 ARE CONSTANTS USED IN TUCKER'S RADIATION EQN,

18* C CO=CONVERSION FACTOR

19' C . ..

2* CO= .,JE-22

21* AC=3.

2-2-- -- ---- - ---

23 C RADIATION EFFECTS ARE INTRODUCED BY INCLUDING RADIATION EN

2'4* C OBTAINED RY FITTING OF TUCKERS RESULTS.

25 _ D..O 6 I I, ,MAX

26* IF (TE(Il)GT,5,JE4) GO TO II

27* C2=t E l .EI

72 0l=-C3i3.,5 5

290 GO TO 77

30',. I IF (TE(I) GT.2, 5ES) GO TO 12

3-1 C2 = 3.~E26 - - - -

320 C3=O*

33* GO TO 77

3. L 2_ 12. E .,.TE.E ).G., .6.O61T0Q---1-3.

35* C2=lI E32

360 C3 = 1- 17 2

37- ' .-------. 0 O .77........ .. -- _

38* 13 C2 = t0I E23

39' C3=.Z28.

077 QRI1)C2(U I ll. 2 A.*.i2 E- - I .i..C.ICO. -__

41* 60 CONTINUE

'2* DO R8 1=2,IMI

43.0 ----- ... .... Q R ( I 1 R I )+ &S S .0 R__I _.R . - 0-[-)-e- -.|

144 R8 CONTINUE

55 QRa1)A S  o( R 1QR ) S e +Q R (2 ) Q R { | A) R i ) C O M"

470 C

1Se 00 66 I=2IMI

99. UD(I U U ( I.)-U. I.I._ .

50 66 CONTINUE

Sl DO 20 12,IMI

5.2' 2 ......... I F U.D( I)..G . -.--

53' GO TO 2w

sq5 30 UD(I ) = l
55 2 CONTINUE .

56 UDiI= :,.

570 UD(IMAX)O ,,



598 C

_ 61 ___ OM I )=U U( /C( ,UeN -0.c I) ___

62* 1F (nM( I )GT9l.,J) GO TO 80
63 QD( I xO*
6'1 __ GO0 TO S____

6S* 80 CONTINUE
6 6' SM~M(I )
67' PAI=(2.*GAM/(GAM+I))C(SM*2)-(GAMI/(GAM+lQ)

68* SIG=(GAM*I *)*(Sm*,2)/(GAMI*SM*h'2+2o )
690 ZETA=SQRT(PAI/SIG)

-1--(GAM/GAMI') (ZET-A**2+I0.)J7/(DTvGAM)

729.. QD( I).A8S(QD( I))

714* QD(1)=Co

75* QD(IMAX)wD -*_-

77* DO.10 ISIIMAX
78* F I I)=U2( I
79* ___F2 I rG A M U 3 S)*,5G A M,*2I0/II ________

IS AC.t2.Ii (I)*(UD( I)0*2)
81' F3( I =(U.2(1I)/UI (I) )G(CAM'U3( I)-,S'GAMI*UZ(1I)**2/UI (I

820 1 ..S.(AC*'2) .UlI(I) *(UD (I 1 *2) ___________

8q*K2( )m=Ul(t)*GSRS/RXSQ(t)
860 __ -29oU2(I)**2/(RX( 1)*U1(I))__________
8 6' - - ---- K3(I') =-U2 ('1)-*GSRS/RXSQ( I)
870 2-2e''J2(1I)'(GAM@*U3( I)-GAMI*.5OU2(1I)*o2/Ut (I)
8es _____ 3.,oCAC.@21'UI( I), UD(U''z )1/(RX(IlOUI U))_________
890 4+QD( I
90 10 CONTINUE

920 END

I' SUBROUTINE EQN1 CUlt ,2,U3,Fi ,F2,F3,K2,K3,DTDCXoHxKl1

20 PARAMETER IMAXxqi s

38 REAL KIK2,K3
____ COMMON/BLOCI/IMI9 IM 2 ____

5* COMMON/8L0C2/GAMGAMIGAM3,C,9RSgCIDR
6' COMMON/EgLOC3/RX(IMAX),X(IMAX)oP1'U(IMAX)gRxSr (IMAX)
7* __COMMON/RLOCI 3/ UJIACIMAX) ,U2A( IMAX)_9U3A(_IMAX) ,UIBC IMAX) ,__

R*1u28( IMAX) *U38( ImAx)
go COMMON/BLOC12/ FIAC JMAX),F2A(IMAX,9F3A(IMAX)gF1SCIMAX)v

10* 1F2 B( IIMA X )pf3P_.( I XA x_......__----

110 COMMON/BLOC13/UIH(IMAX)gU2H(IMAX)gUUH(IMAX)gTEH(IMAX)
120 COMMON/BLOCJ'4/KIH(IMAX),K2H(IMAX),K3H( IMAX)
13'- COMMON/fLOCIS/U3H( IMAX ) UUA(MXUUIA)

I'4' DIMENSION HX(IMAX)qCX(IMAX)

DIMENSION Fg(IMAX) ,F2(IMAX),F3(IMAX) ,IQ(IMAX) ,K3( IMAX)gKt (TMAX)
36' ~ ~ DI MENS ION U (JA)U2(I MAX VU3 (jmAX) ------------- ___



@.X W~g j ( VW ) ~ s )( W ) ~X(V I VI -4 /ZC~ I : X-U VL'W )gz.~I

___ _I)_:)I r, I( fI( 1) )3 1/ V)oi / NWWO) -

-~~ w______ WI Iw1/1)01v/NOwWO). .9

_____________________l "hNI 3.3WV 8Vd
c~)Hr)n' s)n flvn

0 ±fl
6

31'~nHzl
0Hinif cnlvtfcgfile~l'V'il'V n) zxn-ij JNiinoflofs

S:)I S ONDV 10 ON :NO1LIdWQ3 JO0Of

aN3 .15

30N1.LNO3 OJS6
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________________----- --- _ -------X *1 ~ ---
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12 .COMMON/BLOCI4/KINH(IMAXj, K2HVI MAX)9K3H( IMA-X) .

132 COMMON/BLOC25/KIA(IMAX),Kl3(IMAX),K2A(IMAX),K2B(IMAXIK3A(IMAX)

14* _ K3B(IMAXI

IS5 COMMON/BLOC 6/DT

16* COMMON/BLOC42/QR(IMAX)
17 DIMENSION UIA(IMAX) ,U2A(IMAX) ,U3A(IMAX) ,IB(IMAX),U2

B ( I MAX - -,

18 tU3B( IMAX)*UIH(IMAX) ,
UJ2H(IMAX) U3H(IMAX) TEH IMAX)

19' DIMENSION UU(IMAX),UD(IMAX)

20* DIMENSION C(IMAX),DM(IMAX).O t (IMAX)

21' DIMENSION UDAt IMAX) ,
U D (IMAX) ,UU

A ( IMAX) UUB( IMAX)

22' DIMENSION UUH(IMAX)

23* DIMENSION UI(IMAX) 

2') AC=3*

25' DO 66 1=2 IMI

26* UD (I )UU(I) -UU(-I) )

27* UDA(I)=t(uU(l+1)-UU(I1))/2
28* UDB(I ) (UU(I)-UU( I- ))/2*

29* 66 CONTINUE

330 DO 20 1=2"TMI

31' IF (UD (I).GT.C ) GO TO 30

32 GO TO_ 2 ..... . ....

33* 30 UD (M)a 's

3If 20 CONTINUE

35' DO 21 1=2,IM.

360 IF (UDA(I),GT*. ) GO TO 31

37' . GO TO 21

38* 31 UDA ()I .___

390 21 CONTINUE

gol DO 22 I=2,IMI
41e IF (UDB(I1)GT.*C ) GO TO 32

R20 GO TO 22
43* 32 UDB(I)=,

_ * 22 CONTINUE

'5' C
6* D00 SO l=2,IMI

47e DM(I IUU ( -1)/C I )-UU(I)/C(I

48" IF (DM(It)GT.1. ) GO TO 80

49' QD(I) =.

._... . ... GO TO 0 .. -------.--- -

51I 80 CONTINUE

52' SM=DM(1)

53* . PAIa(2 *GAM/(GAM+I1))*(SM*02)-(GAMI/(GAM+o))

S'4 SIG=(GAM*+l)*(SMeo2)/(GAMIlSM**2+2o)

SSo ZETA=SQRT(PAI/SIG)

56' ... QD(JI)=I 1)(C( 1)' 2) (5.PAI-l)Q Oe/SIG+.I) 

57' I-(GAM/GAMI)*(ZETAo'2+1*)
) / ( D TOGAM)

58* 'QD( I) ABS( Q D ( I))

59 5C CONTINUE

60' C

61e DO 13 l=2 IMI

62' FI At(I)=U2A(I)

63' F2A(I)=GAMI*U3A(I)
+. 5 * G AM3*U2A(

1 ) o02/UIA(I)

61* +*S'*(AC*02)OJII A(I)*(UDA(1)*02)

65 F3A ( I )= (U2A( I )/U A( I ) )) (GAM U3A( I )- *GAM Uj2A(I 2/1UIA(I

66' 1 S+, t AC os2) Uli A ( I) (IUDA) (1)* 2)

67'-- FIB( ) =U2i( I )

68' . F2B_ )=GAMI -3 1+.-)5GAM3 J2(.I **2/UlBI(



S2 At C' )=2'U2IR I )/R(l0 1)1

7 3o K2HfI):mUlH(I?*GSRS/RXS0(I)
7q2* 1)2..fHZ( I)02/R X 1U I H(

75.' K3i()-U2H(IJ*GSRS/RXSQ(t)
26 -2 o U 2 ti( I I(G AM U 3 H( I G-6AMI..5 U 2H(1 2 I UH,( I

780 9QD( I
790 KIAC I )-2*.u2A( I) /RXC 1)

31'0 K2AUY=-U)A(I)OGSRS/RXSQ(fl
32* I-2v.OU2A I )*2/(RX( I)*UIA I~

..8I a -U 8I G SRRSL/R SQ 011---__ _

B 14 0I-2**U2B( I )02/(RX I )*U18rIC
s5' K3A(IH=-U2A(I).GSRS/RXSQUI)

a7' 3..S'(AC0'2)'UIA I )*(t)QC )'.2) )/(RX( I) IAC I))
3 8K3B(I)=-U2EBCI)*G5RS/RXSQCI)

2 U____I__A__ 3BCI Mt 50U2 1 !-

3'.S'(AC'@2).U18 I )'(UDC I)''2) )/(Rx( I)'Uj3( I)
9;' 10 CONTINUE

RE TU RN ... _......_---

93' END

1.' SUBROUTINE EQN2(U; ,t2,u)3,Fl j2,F3oK2,K39 FIAF2AjF3AK,K1KHiEI
IF18$F 2 R , F3 P ,K2 H, K3H, D T ,C X , HX ,K I AK18 K 2 A ,K2 8 ~K3 A 9K 3 8_

30 PARAMETER lMAXxZ'4
49 REAL KjK29K3

REAL KIHtKZH#K3H ________

50 REAL KlAKIBK2AK2SK3A.,K3B
74 COMMON/SLOCI/!MIM2

30_ COMMON/LOC2/GAMGAM1,GAM3,GSRS,C;,R
COMMON/BLOC3/RX(IMAX),X(IMAX),PH1(TMAXi;RXSQ(IMiX)
CQ M N R O 6 U joE 92 9U 9 I

I' _ __COMMON/B3LOC7/Ut I oJ.21 9UuI 9L31 TEI_
COMMON/RLOC8/TECC IMAX) ,UIC( IMAX)
COMmON/BLOC2,/UUf IMAX),TE I MAX)

4* _ COMMO/LC33/U3CCJMAX),LIUC(IMAX) __

DIMENSION HX(lMAX),CXCIMAX)
DIMENSION FI(IMAX)tF2( IMAX),F3(IMAX) ,K2(IMAX),K3(IMAX) ,K1(IMAX)

7'_ DIMENSION FlIAUMAX),FA(MAX) 9F3A (I 18 iB1 MA X r2 MAX$



' IlF3 8(TH AX),K2H(IlMAX)K3R(TMAXF AI il Axf

19* DIMENSION Ut(IMAX),UZ(IMAXI ,U3(IMAX)

2 .... DIMENSION KIA(I HMAX) ,KB-_IMAX .LtK_ LLt 1_. B_ M AX _) ..

2 .1I K3A(IMAXIK38( IMAX)

220 DIMENSION EI(IMAX)
23* DIMENSION EIT(IMAX),EIE(IMAX)

740 DO 400 I=2I MI
254 48 FIT(I)=EI( Il

.6. 0" S " 2L IM.l :

27* Ult (I)U (I1)-(DT/(X(I+1)-X( I-I ))*(.5*(F) ll -Fl (I-I))

28# I+(FIA( I )-FlR( I)))

. o............. 2 DT I " ( K I- ( I ) K I (. I _)_

3G* 2+DTeCX( I )F (I) -

31* IJ2 I1) U2(I)-(DT/(X(I+1l)-Xt I l) * *5 (F2 I I+ )-F2( I 1 )

3 .2 ......... ...... ... ....... . F ( I ).I 2 B. ..)_)

33* 2+DTe*5*(K2(I)*K2H(1))
34* 2+DT*CXCT)*F2(I )
35 U3)= U 3 31 L( I ) ( D T/X (-I.I 11_XF- IiDLL E3311-fli--tLL
36' I+(F3A(I)-F38(I)))
37* 2 DT**5*(K3( I )+K3H( ))
.3 ..... .... 2 DT CX I).F3 (I.) I
39 UU(I )=U2( 1)/Ut(

14* TE I)=C *(U3(I /UltI ) *S UU( I)**2)
__.. -- E 101=UV1Lt_(l .I _L) tE )U )I/1 _ "

42Y * S0 CONTINUE

430 C

45a EIE( )=(EIT(I)-EI(I))/EIT(1)
146* - IF (EIF(l)eLTC.50) GO TO q7
7... .............. E .I)EIT ( I

4 * TEl l)=E ( I )*Cl /Ul I )
i49'. U3( 1)=11t l( )*(TE(I)/CI*+.5 UU (I)O 2)
S a..? -............ .. CO N.T IN U .

51" C
52,  RETURN

53. ....... ND ..... ... " -

j) OF COMPILATION: NO DIAGNOSTICS



SUBROUTINE FIOUNn

24r PARAMETER 1MAXc4C

.3# COMMONT/3LOCl/lMlP IM2

_ ~,.** COMMOt4/BLOCS/GA(MA1A.~U(MA.,GSRSClR

60 COMMON/IgLOC6/U3C ,*TEG,.U20,UUGU 10

COMMnN/BLOC8/TEC(IMAX),UIC(IMAX)
go COMMON/FILOC2C/UJU(TMAX)tTE(!MAX)

1~ COMMON/BLOCSC/T
2* COMMON/F1LOC3 ;/EI ( MAX)

*I IF (T*GT*SDT1 GO TO~ 101

6U2( I)=U2(2) _____

74 UU( I1I =U2 I1 /UL' I

I* 1)3(1) -U (l) * (T E ()/Cl.. S*UU ) *e2)

21* GO TO 151

3__ -UZI I )=tlIa

?60UU( I )U2( 1 /U! (1

Z70Elf! )=UI (I)oTE( 1)/Cl

290 151 CONTINUE
3 rj C

32* C

330 IF (UU(1M1)9GT,2%,2.) GO TO 150

.U1- I IMAX )aU I C_(_1M A X

3S*LUU( IMAX)=UUC( IMAX)

366 1)21 MAX)zU ( IMAX)eUU( IMAX)

____ilTEt.-1 M AX-) m.T E C L. I MA X)

38* U3(It4AX)=U3C( IMAX)

390 EIMAX)uU1 (IMAX)*TE(IMAX)/CI

1410 ISO UfIMAX)=UI(IMI)

42 U2( IMAX)=U2( IMI

144* UU(ImAX)=UU(IMI )

~45*TEC ImAX)=TE( IMI )

470 105 CONTINUE
'48' C

D or 'C6MPILATION . 14 NO OAGNCOSTIS



-S 5UBROUTINE -PLOT -rFAG U U U-UtTE

2 ' PARAMETER IMAX=m 4
30 PARAMETER JMAX=5

COMMON/9LOC9/UIP(JMAX, IMAX),tUUP(JMAXlIMAX)ITEP(JMAX,IMAX)

5" DIMENSION Ul(IMAX) UU(IMAX),TE(IMAX)

L6 .IF( IFLAG EQ I) GO TO 20 . .20

70 J=1
80 K=I

9' 20 CONT TNUE

1(0* DO I TI=I IMAX
11 *  UIP(J, K)=UI(I)

121 UUP( J K )=UU( )..

13' TEP(J,K)=TE(I)
I9* K=K+1
15 10 CONTINUE

16* J=J*l
17* K=1

18* RETURN

19* END

In--0F COMPILATION: NO DIANOSTICS-

= ---------- .-- .

I' . SUBROUTINE DTIME (UUC )

2* PARAMETER IMAX=4%

.....* ..... . COMMON/BLOC1 I M t IM2 __ __ __

'4* COMMON/RLOC2/GAMtGtMIGAM3,GSRSCloR

50 COMMON/BLOC3/RX(IMAX),X(IMAX)s PHI(IMAX) RXSQ(IMAX)
_ . COMMON/BLOC.L6/DT _____Q M M _N.. L ... 1.6 _..

7* DIMENSION UU(IMAX), C(IMAX)

8* DIMENSION DDT(IMAX)

S- DO I 'J .. ,1 II I-I

10* DDT(I)=,25*(X(I+1)-X( ))/(ABS(UU( ))+C(1))

II* 10 CONTINUE
. . HDT=0D.T( 1) :-:

13' 00 20 I=2,lMI

14 00DT=DDTT()

15 IF .(.HDT*GT,QD.T) GO TO l __

160 , GO TO 20

170 3C HOT=ODT

.18........... 2C CONTINUE

19* DT=HDT

206 RETURN
21- END

ID 0F COMPILATION: NO DIAGNOSTICS.



APPENDIX C

Presentations

During the period of performance of this contract, the following

papers were presented.

(1) "A Compressible MHD Model of the Development of a Sunspot,"

Annual Meeting of the Solar Physics Division, American Astro-

nomical Society, Huntsville, Alabama, November 17-19, 1970, with

M. Hagyard and Y. Nakagawa.

(2) "H Flares: The Response of the Chromosphere to a Downward Shock

Wave," Annual Meeting of the Solar Physics Division, American

Astronomical Society, University of Maryland, April 4-6, 1972,

with S. M. Han and Y. Nakagawa.

(3) "Non-Linear Study of the Dynamical Behavior of Force-Free Magnetic

Field," Annual Meeting of the Solar Physics Division, American

Astronomical Society, University of Maryland, April 4-6, 1972,

with M. Hagyard and Y. Nakagawa.

(4) "Some Characteristics of Disturbed Solar Atmosphere," High Altitude

Observatory Seminar (Invited), July 1973.

(5) "Solar Atmosphere," AIAA (American Institute of Aero. & Astro.)-

Alabama Section Space and Atmospheric Sciences Panel Meeting,

(Invited), December 3, 1973.


